Persamaan Nilai Mutlak

Untuk memahami konsep nilai mutlak, akan diilustrasikan dengan kisah berikut ini: Seorang anak pramuka sedang latihan baris berbaris. Dari posisi diam, si anak diminta maju 2 langkah ke depan, lalu 4 langkah ke belakang. Dilanjutkan dengan 3 langkah ke depan dan alhasil 2 langkah ke belakang. Dari kisah di atas sanggup diambil permasalahan :

a. Berapakah banyaknya langkah anak pramuka tersebut dari pertama hingga terakhir ?
b. Dimanakah posisi terakhir anak pramuka tersebut, kalau diukur dari posisi diam? (berapa langkah ke depan atau berapa langkah ke belakang)

Untuk menjawab permasalahan diatas, akan diberikan gambar garis bilangan berikut:

Dari gambar di atas, kita misalkan bahwa x = 0 yaitu posisi membisu (awal) si anak. Anak panah ke kanan menawarkan arah langkah ke depan (bernilai positif) dan anak panah ke kiri menawarkan arah langkah ke belakang (bernilai negatif). Sehingga permasalahan di atas sanggup dijawab sebagai berikut :

a. Banyaknya langkah anak pramuka tersebut dari pertama hingga terakhir yaitu Bentuk penjumlahan 2 + 4 + 3 + 2 = 11 langkah. Bentuk penjumlahan ini merupakan penjumlahan tampa memperhatikan arah ke depan (positif) dan ke belakang (negatif)

b. Dari gambar diatas, sanggup dilihat bahwa posisi terakhir anak pramuka tersebut, kalau diukur dari posisi membisu yaitu 1 langkah ke belakang (x = –1). Hasil ini didapat dari bentuk penjumlahan 2 + (–4) + 3 + (–1) = –1. Bentuk penjumlahan ini merupakan penjumlahan dengan memperhatikan arah ke depan (positif) dan ke belakang (negatif).

Ilustrasi dari penyelesaian soal (a) di atas merupakan dasar dari konsep nilai mutlak. Dimana Nilai mutlak suatu bilangan real x merupakan jarak antara bilangan itu dengan nol pada garis bilangan. Dan dilambangkan dengan │x│. Secara formal nilai mutlak didefinisikan


Dari konsep diatas diperoleh : │–3│ = 3 , │–15│ = 15 , │6│ = 6 , │10│ = 10 dan seterusnya.
Untuk lebih memahami pertidaksamaan nilai mutlak, perhatikan teladan berikut :

01. Tentukanlah nilai
(a) │–4│ + │5│ – │–3│                                 (b) 6 – │–2│ + │–5│ + 1
(c) │4 – │–7││                                               (d) │–9 + │–2││

Jawab
(a) │–4│ + │5│ – │–3│ = 4 + 5 – 3 = 6
(b) 6 – │–2│ + │–5│ + 1 = 6 – 2 + 5 + 1 = 10
(c) │4 – │–7││ = │4 – 7│ = │–3│ = 3
(d) │–9 + │–2││ = │–9 + 2│ =│–7│ = 7

02. Untuk x = –3, maka tentukanlah nilai │x2 + 6x + 5│

Jawab
│x2 + 6x + 5│ = │(–3)2 + 6(–3) + 5│
                         = │9 – 18 + 5│
                         = │–4│ 
                         = 4

03. Untuk x = 2, maka tentukanlah nilai 4│2 – 6x│+ │3x – 8│

Jawab
4│2 – 6x│+ │3x – 8│ = 4│2 – 6(2)│+ │3(2) – 8│
                                      = 4│–10│+ │–2│
                                      = 40 + 2
                                      = 42

04. Untuk x = –2, maka tentukanlah nilai │x2 – 6x│– │4x + 5│

Jawab
│x2 – 6x│– │4x + 5│= │(–2)2 – 6(–2)│– │4(–2) + 5│
                                     = │4 + 12│– │–8 + 5│
                                     = 16 + 3
                                     = 19

05. Seekor bekicot akan menaiki tiang bendera dimulai awal tanggal 5 Agustus. Jika pada tanggal ganjil bekicot itu bergerak naik setinggi 5 m, dan pada tanggal genap ia turun sejauh 3 m, maka ia akan datang dipuncak tiang bendera sempurna pada selesai tanggal 17 Agustus.
(a) Berapakah tinggi tiang bendera
(b) Berapakah jauh perjalanan bekicot itu?

Jawab
(a) Tinggi tiang bendera = 5 – 3 + 5 – 3 + 5 – 3 + 5 – 3 + 5 – 3 + 5 – 3 + 5 = 17m
(b) jauh perjalanan bekicot itu = 5 + │–3│ + 5 + │–3│+ 5 + │–3│+ 5 + │–3│+ 5 + │–3│ + 5 + │–3│+ 5 = 53 m

Untuk menuntaskan persamaan nilai mutlak, sanggup dipakai sifat
01. (a) Jika │f(x)│ = a maka f2(x) = a2
(b) Jika │f(x)│ = a maka f(x) = a atau f(x) = –a

02. (a) Jika │f(x)│ = │g(x)│ maka f2(x) = g2(x) 
(b) Jika │f(x)│ = │g(x)│ maka f(x) = g(x) atau f(x) = –g(x)

Untuk lebih memahami pertidaksamaan nilai mutlak, perhatikan teladan berikut :
01. Tentukan nilai x yang memenuhi persamaan berikut :
(a) │2x – 5│ = 3                  (b) │4 – 3x│ = 6

Jawab
(a) │2x – 5│ = 3
(2x – 5)2 = 32
4x2 – 20x + 25 = 9
4x2 – 20x + 16 = 0
x2 – 5x + 4 = 9
(x – 4)(x – 1) = 0
Makara x = 1 dan x = 4

(b) │3 – 2x│ = 7
(3 – 2x)2 = 72
9 – 12x + 4x2 = 49
4x2 – 12x – 40 = 0
x2 – 3x – 10 = 0
(x – 5)(x + 2) = 0
Makara x = 5 atau x = –2

02. Tentukan nilai x yang memenuhi persamaan berikut :
(a) │2x + 4│ = │x – 1│                        (b) │3x + 4│ = │2x – 1│

Jawab
(a) │2x + 4│ = │x – 1│
(2x + 4)2 = (x – 1)2
4x2 –16x + 16 = x2 – 2x + 1
3x2 – 14x + 15 = 0
(3x – 5)(x – 3) = 0
Makara x = 5/3 atau x = 3

(b) │3x + 4│ = │2x – 1│
(3x + 4)2 = (2x – 1)2
9x2 +24x + 16 = 4x2 – 4x + 1
5x2 + 28x + 15 = 0
(5x + 3)(x + 5) = 0
Makara x = –3/5 atau x = –5

03. Tentukan nilai x yang memenuhi persamaan berikut :
(a) │3x – 2│ = x + 4                          (b) │2x + 4│ = x – 3

Jawab
(a) │3x – 2│ = x + 4
(3x – 2)2 = (x + 4)2
9x2 – 12x + 4 = x2 + 8x + 16
8x2 – 20x – 12 = 0
2x2 – 5x – 3 = 0
(2x + 1)(x – 3) = 0
Makara x = –1/2 atau x = 3

Uji: x = –1/2 maka x + 4 = –1/2 + 4 = 7/2 (memenuhi)
Uji: x = 3 maka x – 4 = 3 + 4 = 7 (memenuhi)
Sehingga H = {–1/2, 3}

(b) │2x – 4│ = x – 3
(2x – 4)2 = (x – 3)2
4x2 –16x + 16 = x2 – 6x + 9
3x2 – 22x + 7 = 0
(3x – 1)(x – 7) = 0
Makara x = 1/3 atau x = 7

Uji: x = 1/3 maka x – 3 = 1/3 – 4 = –11/3 (tidak memenuhi)
Uji: x = 7 maka x – 4 = 7 – 4 = 3 (memenuhi)
Sehingga H = {7}

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel